Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 137(2): 124-133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102024

RESUMO

Wheat Qu plays the role of saccharification fermentation, providing microorganisms and flavor in the fermentation of huangjiu, and the use of functional microorganisms to fortify wheat Qu is becoming increasingly popular. Yet, the mechanisms promoting microbial successions of wheat Qu remain unclear. In this study, we first correlated microbial community succession with physicochemical factors (moisture, temperature, acidity, glucoamylase and amylase) in inoculated raw wheat Qu (IRWQ) with Saccharopolyspora rosea. The Mantel test was performed to investigate the significance and found that temperature (r = 0.759, P = 0.001), moisture (r = 0.732, P = 0.006), and acidity (r = 0.712, P = 0.017) correlated significantly with the bacterial community in phase 1 (0-40 h). Meanwhile, temperature correlated significantly with the fungal community in phases 1 and 2 (40-120 h). To confirm the effect of temperature on microbial communities, the artificial reduction of bio-heat (37°C) in IRWQ also reduced the relative abundance of heat-resistant microorganisms including Bacillus and Saccharopolyspora. A higher abundance of Saccharopolyspora (87%) in IRWQ was observed following biofortified inoculation of S. rosea, in which glucoamylase activity increased by 40% compared to non-inoculated raw wheat Qu (NIRWQ) (1086 U/g vs 776 U/g). Finally, the IRWQ was employed to mechanized huangjiu fermentation and it was found to reduce the bitter amino acid and higher alcohol content by 27% and 8%, respectively, improving the drinking comfort and quality of huangjiu.


Assuntos
Bacillus , Microbiota , Glucana 1,4-alfa-Glucosidase/metabolismo , Bactérias/metabolismo , Bacillus/genética , Bacillus/metabolismo , Fermentação , China
2.
J Sci Food Agric ; 102(15): 7301-7312, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35757866

RESUMO

BACKGROUND: Mechanized Huangjiu is a stable product, is not subject to seasonal production restrictions, and markedly reduces labor intensity compared to traditional manual Huangjiu. However, the bitterness of mechanized Huangjiu impedes its further development. RESULTS: Based on process optimization, when the fermentation temperature was 45 °C and the fermentation time was 122 h, the inoculation amount of Saccharopolyspora was 5%, the amount of added water was 26%, and the glucoamylase and amylase activities of wheat Qu increased by 27% and 40% respectively, compared with those before optimization. Huangjiu fermented by raw wheat Qu inoculated with Saccharopolyspora rosea F2014 showed a significant (P < 0.05) decrease in bitter amino acid content (1.24 vs. 2.86 g L-1 , a decrease of 56%), which attenuated its bitterness. CONCLUSION: An innovative fermentation process of inoculating Saccharopolyspora into raw wheat Qu was developed for the first time. Such a process could be used to control bitterness based on raw wheat Qu inoculated with Saccharopolyspora rosea F2014, instead of traditional wheat Qu in Huangjiu fermentation. © 2022 Society of Chemical Industry.


Assuntos
Saccharopolyspora , Saccharopolyspora/metabolismo , Fermentação , Glucana 1,4-alfa-Glucosidase/metabolismo , Paladar
3.
Food Res Int ; 156: 111126, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651005

RESUMO

The strong-flavor Baijiu (SFB) brewing workshop is a complex ecosystem with diverse microbiomes. As a potential source of microbiomes in fermentation, microbiota in the environmental microecology may affect the quality and flavor of SFB. Here, we report the collection of environmental microecological samples from three SFB workshops with different usage times (named 70a, 30a, and new, respectively). We used 16S rRNA and internal transcribed spacer (ITS) gene amplicon full-length sequencing to explore the microbial community structure in SFB. The SourceTracker tool was used to investigate links among fermentation samples, raw materials, and the environment and decipher the construction process in the workshop indoor environment. Lactobacillus acetotolerans was the most important bacterial genus in Zaopei after fermentation, whereas other types of samples exhibited different prokaryotic community structures. The composition of the fungal community was similar, with Saccharomycopsis fibuligera, Debaryomyces hansenii, Lichtheimia ramosa, Lichtheimia corymbifera, and Pichia kudriavzevii being the most abundant, and were detected in most samples. Further comparison of the microbiota in the workshop environment showed that the diversity of the microbiota in the indoor environment decreased, showing different clustering patterns under the influence of location. With increasing usage time, the contribution of deterministic processes to the assembly of the prokaryotic community increases, and the community structure tends to stabilize, exhibiting its own characteristics. SFB-fermenting resident functional fungi were the major components of the fungal community, and SourceTracker analysis also highlighted the contributions of Zaopei, Daqu, and tool surfaces as fungal sources. This study is the first to comprehensively monitor the microbial profile of the SFB production environment. This research can be extended to involve more complex spontaneous fermentation environment microbiota and has important implications for the control of spontaneous fermentation.


Assuntos
Microbiota , Bactérias/genética , China , Fermentação , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...